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Abstract
The study of solitary wave solutions is of prime significance for the nonlinear
Schrödinger equation with higher order dispersion and/or higher degree
nonlinearities in nonlinear physical systems. We derive the discrete cubic–
quintic nonlinear Schrödinger equation from a Hamiltonian using different
Poisson brackets. By using the extended Jacobian elliptic function approach,
we investigate the abundant exact stationary solitons and periodic waves
solution of this equation. These solutions include, Jacobian periodic solutions,
alternating phase Jacobi periodic solution, kink and bubble soliton solutions,
alternating phase kink soliton solution and alternating phase bubble soliton
solution, provided that coefficients are bound by special relation. And then
with the aid of symbolic computation, we present in explicit form these
solutions. The stability of bubble and kink soliton as well as alternating kink
and alternating bubble soliton are also investigated.

PACS numbers: 42.65.−k, 42.65.Sf, 47.54.+r, 05.45.Yv, 42.65.Tg

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Solitons, in general, manifest themselves in a large variety of wave/particle systems in nature:
practically in any system that possesses both dispersion (in time or space) and nonlinearity.
Solitons have been identified in optics, plasmas, fluids, condensed matter, particle physics,
and astrophysics. Over the past decades, the rapid progresses on the fronts of spatial and
spatiotemporal optical solitons had been the hotspots [1, 2] and among these areas, the
forefront of soliton research has been shifted to optics. Spatial optical solitons are self-trapped
optical beams that exist by virtue of the balance between diffraction and nonlinearity [1, 2].
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Spatiotemporal optical solitons are nondiffracting and nondispersing wave packets propagating
in nonlinear optical media, and in [1], the authors offer an up-to-date survey of experimental
and theoretical results in this field. It was recently shown that discrete solitons exist in several
physics field [3] and can be used to realize various functional operations, such as blocking,
routing, logic functions, time gating, etc. [4].

The investigation of exact solutions, in particular solitons, for nonlinear mathematical
physics equations is an important and interesting subject. Those solutions play important
roles in understanding the fundamental properties of physical systems [5]. So, searching for
some exact physically significant solution is the important topic of the solitons theory. There
is a wide range of approaches for finding special solutions of the nonlinear partial differential
equations, such as the inverse scattering method [6], the Backlünd transformation [7], the
homogeneous balance method [8], the multilinear separation approach [9], the tanh method
[10], the standard truncated Painlevé expansion [11, 12], the Jacobian elliptic function method
[13] and so on. However, less work has been done to investigate exact solutions of a nonlinear
differential–difference equation (NDDE), because to extend the above methods to a NDDE is
rather difficult.

One of the prototypical differential–difference model that is both physically relevant is the
so-called discrete nonlinear Schrödinger (DNLS) equation. It represents one of the simplest
equations in which the combination of dispersive effects with the cubic nonlinearity leads to
the localized solutions of soliton type. The most direct implementation of DNLS equations
can be identified in one-dimensional array of coupled optical waveguides [14]. Light-induced
photonic lattices [15] and an array of Bose–Einstein condensate [16] have recently emerged as
an important application of such equations. It is well known that the standard DNLS equation
cannot have bright or dark soliton solutions with an arbitrary position relative to the lattice;
only site-centred and bound-centred solitons are possible. Physically, this fact is related to
the presence of the Peirls–Nabarro barrier, an effective potential periodic with the spacing of
the lattice. However, there are some ‘exceptional’ discretizations which do support families
of solitons with arbitrary position relative to the lattice [17]. An important example of this
is the integrable Ablowitz–Ladik (AL) equation. The AL system has N-soliton solutions and
it is well known that the Peierls–Nabarro barrier vanishes in this case. However, the AL
model is not physically realistic because it does not contain the Kerr-nonlinearity. One of
the physical effects which extend a Kerr-type nonlinearity is the saturation of the nonlinearity
which appears in the model of propagation of optical pulse in various doped fibres [18].
Khare et al have used elliptic-function identities to find exact solutions of DNLS equation
with saturable nonlinearity [19]. More recently, Dmitriev et al [20] presented a class of DNLS
equations for general polynomial nonlinearity and obtained soliton solutions in the case of
cubic nonlinearity. For the continuous NLS equation with attractive interaction it is well
known that the higher order nonlinearities (higher than the cubic) lead to the collapse in a
finite time (blow up) if the norm exceeds a critical value, even in the one-dimensional case.
The interplay between dimensionality and the order of nonlinearity has indeed been used in
the past as a way to investigate collapse in low-dimensional nonlinear systems [21]. Although
in a DNLS system true collapse cannot occur, due to the conservation norm, it may be possible
that some of the features observed in the continuous NLS system about localized solutions
may also exist at the discrete level. In particular, it is known that the 1D continuous NLS
equation with high-order nonlinearity (e.g., quintic) there exists only one localized solution
for each value of the norm (critical norm), the so-called Townes soliton [22], which separates
collapsing and decaying solution while being marginally stable against decay or collapse. In
the presence of an external field, for example a periodic potential, it is possible to stabilize
such solutions of continuous NLS with higher order nonlinearities against decay, extending
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the existence range of localized solutions from a single value of the norm to a whole interval.
Since the discrete NLS equation can be viewed as a tight binding model of the continuous
NLS with a periodic potential, it is of interest to investigate the existence of discrete, stable
localized solutions when higher order nonlinearity are introduced in the DNLS equation.

The paper is structured as follows. In section 2, we derive the discrete cubic–quintic
nonlinear Schrödinger (DCQNLS) equation. Stationary solitons and periodic waves solution
are found in section 3. Then, in section 3.6 we study the stability of dark solitons: bubble and
kink solitons solution. Finally, section 4 concludes the paper.

2. The model

A class of DNLS equations with arbitrarily high-order nonlinearities was introduced in several
works [23]:

iψ̇n + (ψn+1 + ψn−1)[1 + f (|ψn|2)] − νf ′(|ψn|2)ψn = 0 (1)

where the function f (x), a polynomial of degree p + 1, is given by:

f (x) =
p∑

j=0

αjx
j+1. (2)

This equation is derived from the Hamiltonian given by

H =
N∑

n=1

[|ψn − ψn+1|2 − 2|ψn|2 + ν ln(1 + f (|ψn|2))] (3)

using the deformed Poisson brackets

{ψn,ψ
∗
m} = i(1 + f (|ψn|2))δnm, {ψn,ψm} = {ψ∗

n , ψ∗
m} = 0. (4)

The Poisson brackets can be compactly written as

{U,V } = i
N∑

n=1

(
dU

dψn

dV

dψ∗
n

− dV

dψn

dU

dψ∗
n

)
[1 + f (|ψn|2)]. (5)

The equation of motion is

ψ̇n = {H,ψn}. (6)

In the particular case of the cubic–quintic nonlinearity, the function f can be written as:

f (|ψn|2) = α0|ψn|2 + α1|ψn|4. (7)

Substituting equation (4) into equation (3), we obtain the DCQNLS equation

iψ̇n + α(ψn+1 − 2ψn + ψn−1) + β|ψn|2ψn + γ |ψn|2(ψn+1 + ψn−1)

+ η|ψn|4(ψn+1 + ψn−1) = 0, (8)

with the normalized coefficients α = 1, να0 = −2, β = −2να1, γ = α0, η = α1. This
equation describes the propagation of discrete self-trapped beams in an array of weakly coupled
nonlinear optical waveguides. In equation (8), ψn is a complex-valued ‘wavefunction’ at site
n. The coupling constant is α, while β and γ are cubic nonlinearities and η is the quintic
nonlinearity. The DNLS equation appears ubiquitously [1] throughout modern science since
it represents one of the simplest equations in which the combination of dispersive effects with
a cubic nonlinearity leads to localized solutions of solitons type. Most notably is the role it
plays in understanding the propagation of the electromagnetic wave in glass fibres and other
optical waveguides [24]. More recently the DNLS equation has been used as a tight binding
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model for Bose–Einstein condensates in optical lattices [25, 26]. From a physical point of
view, it is of interest to study the effects of including high order nonlinear terms (higher than
cubic) in the equation on discrete solitons. These terms appear in different physical contexts
such as Bose gases with hard core interactions in the Tonk–Giradeau regime [27] and low-
dimensional Bose–Einstein condensate in which quintic nonlinearities in the NLS equation
are used to model three-body interactions [28]. A self-focusing cubic–quintic NLS equation
is also used in nonlinear optics as a model for photonic crystals [29].

3. Exact solutions of the QDNLS equation

In order to obtain some exact solutions of equation (8), we use the Jacobian elliptic function
approach [13]. Firstly, we make the transformations

ψn = eiθnφn(ξn), θn = pn + ωt + θ0, ξn = kn + ct + ζ0, (9)

and

ψn+1 = eiθneipφn+1(ξn), ψn−1 = eiθne−ipφn−1(ξn). (10)

With the expression e±ip = cos(p) ± i sin(p), equation (8) is therefore reduced to

−ωφn + icφ′
n + α[cos(p)(φn+1 + φn−1) + i sin(p)(φn+1 − φn−1) − 2φn] + βφ3

n

+ γφ2
n[cos(p)(φn+1 + φn−1) + i sin(p)(φn+1 − φn−1)]

+ ηφ4
n[cos(p)(φn+1 + φn−1) + i sin(p)(φn+1 − φn−1)] = 0 (11)

Separating the real and imaginary parts, one gets

−(ω + 2α)φn + βφ3
n + cos(p)

(
α + γφ2

n + ηφ4
n

)
(φn+1 + φn−1) = 0, (12a)

cφ′
n + sin(p)

(
α + γφ2

n + ηφ4
n

)
(φn+1 − φn−1) = 0. (12b)

We use the following series expansion as a solution of equations (12a) and (12b):

φn(ξn) = a0 + a1sn(ξn) + a2sn
2(ξn), (13)

where sn(ξn) ≡ sn(ξn,m), m(0 < m < 1) is a modulus of Jacobian elliptic functions and
ai (i = 0, 1, 2) are constants to be determined. From the identity

sn(ξ1 + ξ2) = sn(ξ1)cn(ξ2)dn(ξ2) + sn(ξ2)cn(ξ1)dn(ξ1)

1 − m2sn2(ξ1)sn2(ξ2)
, (14)

we obtain

φn+1(ξn) = a0 + a1

[
sn(ξn)cn(k)dn(k) + sn(k)cn(ξn)dn(ξn)

1 − m2sn2(ξn)sn2(k)

]

+ a2

[
sn(ξn)cn(k)dn(k) + sn(k)cn(ξn)dn(ξn)

1 − m2sn2(ξn)sn2(k)

]2

, (15a)

φn−1(ξn) = a0 + a1

[
sn(ξn)cn(k)dn(k) − sn(k)cn(ξn)dn(ξn)

1 − m2sn2(ξn)sn2(k)

]

+ a2

[
sn(ξn)cn(k)dn(k) − sn(k)cn(ξn)dn(ξn)

1 − m2sn2(ξn)sn2(k)

]2

. (15b)

Substituting equations (13) and (15) into equation (12), clearing the denominator and
setting the coefficients of all power like sni(ξn) (i = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) and
cn(ξn)dn(ξn)sn

j (ξn) (j = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) to zero, one can obtain a series of
over-determined algebraic equations, which are omitted to avoid the tediousness. By solving
these equations and according to equations (9) and (13), we obtain the following solutions of
equation (8).
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Figure 1. Profile of Jacobian elliptic sn function solution ψn,1 m = 0.9, p = 0, α = −8, k = 0.3,

γ = 1, δ = 0.025, θ0 = 0, ξ0 = 0 at t = 0.

3.1. Jacobi sn function solution

ψn,1 = ±msn(k)

√
−γ ±

√
γ 2 − 4ηα

2η
sn(kn + ζ0) exp[i(−2α + 2αcn(k)dn(k))t + iθ0]. (16)

3.2. Jacobi cn function solution

ψn,2 = ±m2sn2(k)

√
α

γ
(1 − cn2(kn + ζ0)) exp[i(−2α + 2αcn2(k)dn2(k))t + iθ0]. (17)

The properties of solutions (16) and (17), are shown in figures 1 and 2, respectively.

3.3. Alternating phase Jacobi sn function solution

ψn,3 = ±(−1)nmsn(k)

√
−γ ±

√
γ 2 − 4ηα

2η
sn(kn + ζ0) exp[i(−2α − 2αcn(k)dn(k))t + iθ0].

(18)

3.4. Alternating phase Jacobi cn function solution

ψn,4 = ±(−1)nm2sn2(k)

√
α

γ
(1 − cn2(kn + ζ0)) exp[i(−2α − 2αcn2(k)dn2(k))t + iθ0].

(19)

The properties of solutions (18) and (19), are shown in figures 3 and 4, respectively. When
m → 1, we obtain the following new stationary solutions.
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Figure 2. Profile of Jacobian elliptic cn function ψn,2 m = 0.9, p = 0, α = 2, k = 0.3, γ = 1,

θ0 = 0, ξ0 = 0 at t = 0.

Figure 3. Profile of alternating phase Jacobian elliptic sn function solution ψn,3 m = 0.9, p = π,

α = −8, k = 0.3, γ = 1, δ = 0.025, θ0 = 0, ξ0 = 0 at t = 0.

3.5. Kink soliton solution

ψn,5 = ±
√

−γ ±
√

γ 2 − 4ηα

2η
tanh(k) tanh(kn + ζ0) exp[i(−2α + 2α sec h2(k))t + iθ0]. (20)
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Figure 4. Profile of alternating phase Jacobian elliptic cn function solution ψn,4 m = 0.9, p = π,

α = 2, k = 0.3, γ = 1, θ0 = 0, ξ0 = 0 at t = 0.

3.6. Bubble soliton solution

ψn,6 = ±
√

α

γ
tanh2(k) tanh2(kn + ζ0) exp[i(−2α + 2α sec h4(k))t + iθ0]. (21)

The static dark solitons of the NLS equation can be classified under two broad classes.
Bubbles are one-, two- and three-dimensional nontopological solitons arising typically in
models with competing interactions [30–32]. The second class includes topological solitons
of the Gross–Pitayevski equation and their one-dimensional counterparts, kinks. The static
bubbles are always unstable [30–34], and this property endows them with a transparent physical
interpretation as nuclei of the first-order transition [35]. The properties of the solutions (20)
and (21) are shown in figures 5 and 6, respectively.

3.7. Alternating phase kink soliton solution

ψn,7 = ±(−1)n

√
−γ ±

√
γ 2 − 4ηα

2η
tanh(k) tanh(kn + ζ0)

× exp[i(−2α − 2α sec h2(k))t + iθ0]. (22)

3.8. Alternating phase bubble soliton solution

ψn,8 = ±(−1)n
√

α

γ
tanh2(k) tanh2(kn + ζ0) exp[i(−2α − 2α sec h4(k))t + iθ0] (23)

The properties of the solutions (22) and (23) are shown in figures 7 and 8, respectively. Here,
k, ζ0, θ0 are arbitrary constants. These solutions exist if the quantity under square root is
positive. Thus, equations (16), (18), (20) and (22) require that γ 2 − 4ηα � 0, ηα < 0 if
γ > 0, ηα > 0 if γ < 0 or γ 2 − 4ηα � 0, ηα > 0 if γ < 0, α < 0 if γ > 0. Equations (17),
(19), (21) and (23) require αγ > 0.
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Figure 5. Profile of kink soliton solution ψn,5 m = 1, p = 0, α = −8, k = 0.3, γ = 1,

δ = 0.025, θ0 = 0, ξ0 = 0 at t = 0.

Figure 6. Profile of bubble soliton solution ψn,6 m = 1, p = 0, α = 2, k = 0.3, γ = 1, θ0 = 0,

ξ0 = 0 at t = 0.

The approximate solutions (16)–(23) contain the free parameter ζ0 defining the soliton
position. However, it is well known that the standard DNLS equation have stationary soliton
solutions only for a discrete set of values of ζ0 (e.g. on-site, ζ0 = 0, and inter-site, ζ0 = 1

2 ).
However, there are several exceptional discretizations of the cubic NLS equation where
stationary soliton solutions exist for any ζ0, or, in other words, they can be placed anywhere
with respect to the lattice; otherwise put, the Peirls–Nabarro potential absent for stationary
solutions of these models. The DCQNLS model used in this work is then one of the examples
in which the stationary solutions include an arbitrary translational invariance.
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Figure 7. Profile of alternating phase kink soliton solution ψn,7 m = 1, p = π, α = −8, k = 0.3,

γ = 1, δ = 0.025, θ0 = 0, ξ0 = 0 at t = 0.

Figure 8. Profile of alternating phase bubble soliton solution ψn,8 m = 1, p = π, α = 2,

k = 0.3, γ = 1, θ0 = 0, ξ0 = 0 at t = 0.

The continuous bubble are always unstable [35], it would then interesting to investigate
whether discreteness effects could stabilize bubbles.

4. Stability analysis

In order to study the linear stability of the exact solutions ψn,j obtained in section 3, we
introduce the following expansion

ψn(t) = (φn,j + εn(t)) eiωt , (24)



6142 G C L Tiofack et al

(a) (b)

Figure 9. (a) Eigenvalue spectrum of the bubble soliton solution ψn,6 p = 0, k = 0.3, β = 0.4,

γ = 1, η = −1, θ0 = 0. (b) Spectral plane of the bubble soliton solution ψn,6
p = 0, k = 0.3, β = 0.4, γ = 1, η = −1, θ0 = 0.

applied in the frame rotating with frequency ω of the solution. Substituting equation (24) into
the DCQNLS equation, we find that the linearized equation satisfied by εn(t) is given by

i
.

εn −ωεn + α(εn+1eip + εn−1e−ip − 2εn) + β(2εn + ε∗
n)φ

2
n

+ γ
[
φ2

n(εn+1eip + εn−1e−ip) + φn(εn + ε∗
n)(φn+1eip + φn−1e−ip)

]
+ η

[
φ4

n(εn+1eip + εn−1e−ip) + 2φ3
n(εn + ε∗

n)(φn+1eip + φn−1e−ip)
] = 0. (25)

Expanding εn(t) in real and imaginary parts: εn(t) = an(t) + ibn(t), the linearized equations
can be written as({an}

{bn}
)

=
(

M1 M3

M2 M4

) ({an}
{bn}

)
≡ M̂

({an}
{bn}

)
, (26)

with:


(M1)nm = −sin(p)(δn,m+1 − δn,m−1)
(
α + γφ2

n + ηφ4
n

)
− 2 sin(p)φn(φn+1 − φn−1)

(
γ + 2ηφ2

n

)
δn,m,

(M2)nm = −(
ω + 2α − 3βφ2

n

)
δn,m + cos(p)(δn,m+1 + δn,m−1)

(
α + γφ2

n + ηφ4
n

)
+ 2 cos(p)φn(φn+1 + φn−1)

(
γ + 2ηφ2

n

)
δn,m,

(M3)nm = (
ω + 2α − βφ2

n

)
δn,m − cos(p)(δn,m+1 + δn,m−1)

(
α + γφ2

n + ηφ4
n

)
,

(M4)nm = −sin(p)(δn,m+1 − δn,m−1)
(
α + γφ2

n + ηφ4
n

)
,

(27)

Stationary soliton solution is linearly stable if and only if the matrix M̂ has all its eigenvalues
on the imaginary axis. Otherwise, the solution is unstable. In our stability analysis, we have
used periodic boundary conditions. The eigenvalue spectrum of the matrix M̂ determines the
stability of the exact solutions bubble and kink soliton (see figures 9 and 10, respectively). The
eigenvalue spectrum always contains eigenvalues which are zero. This eigenvalue corresponds
to the translational invariance (ζ0) and to the invariance of the solution ψn,j to a constant phase
factor, respectively. Since the spectra plane (λr, λi) of these solutions shows that all the
eigenvalues are in the imaginary axis, one can say that both kink and bubble solutions are
stable. Figures 11 and 12 depict the eigenvalues spectrum of alternating bubble and alternating
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(a) (b)

Figure 10. (a) Eigenvalue spectrum of the kink soliton solution ψn,5 p = 0, k = 0.3, β = 0.4,

γ = −1, η = 0.025, θ0 = 0. (b) Spectral plane of the kink soliton solution ψn,5
p = 0, k = 0.3, β = 0.4, γ = −1, η = 0.025, θ0 = 0.

(a) (b)

Figure 11. (a) Eigenvalue spectrum of the alternating bubble soliton solution ψn,8 p = π, k = 0.3,

β = 0.4, γ = 1, η = −1, θ0 = 0. (b) Spectral plane of the alternating bubble soliton solution
ψn,8 p = π, k = 0.3, β = 0.4, γ = 1, η = −1, θ0 = 0.

kink soliton solutions. From these figures, we see that complex conjugate eigenvalues leave the
imaginary axis and go out in the complex plane. Thus, the alternating bubble and alternating
kink solutions are always unstable.

5. Summary and discussion

By using the Jacobian elliptic function approach, we have analysed exact solutions of the
DCQNLS equation. The set of solution includes Jacobian periodic solutions, alternating
phase Jacobi periodic solution, kink and bubble soliton solutions, alternating phase kink
soliton solution and alternating phase bubble soliton solution. On the other hand, it happens
that solitons admit translational invariance in the same way as in the integrable Ablowitz–Ladik



6144 G C L Tiofack et al

(a) (b)

Figure 12. (a) Eigenvalue spectrum of the alternating kink soliton solution ψn,7 p = π, k =
0.3, β = 0.4, γ = −1, η = 0.025, θ0 = 0. (b) Spectral plane of the alternating kink soliton
solution ψn,7 p = π, k = 0.3, β = 0.4, γ = −1, η = 0.025, θ0 = 0.

lattice. We also studied the stability of the stationary solutions under small perturbation and
have found that the dark soliton solutions (kink and bubble) are stable, while the alternating
phase dark soliton solutions are unstable. Our solutions and related properties are likely to be
useful in many physical contexts including nonlinear optics, atomic physics and Bose–Einstein
condensate. Clearly, these localized solutions only represent a small subset of large variety
of possible solutions admitted by the DCQNLS equation. In forthcoming studies, it would be
interesting, for example, to extend the present approach to higher dimensional systems and
a set of coupled equations and also investigate exact explicit bright soliton solution of the
DCQNLS equation.
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